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a b s t r a c t

The paper addresses the synergies from combining a heuristic method with a predictive technique to
solve the Dynamic Traveling Salesman Problem (DTSP). Particularly, we build a genetic algorithm that
feeds on Newton's motion equation to show how route optimization can be improved when targets are
constantly moving. Our empirical evidence stems from the recovery of fish aggregating devices (FADs)
by tuna vessels. Based on historical real data provided by GPS buoys attached to the FADs, we first
estimate their trajectories to feed a genetic algorithm that searches for the best route considering their
future locations. Our solution, which we name Genetic Algorithm based on Trajectory Prediction
(GATP), shows that the distance traveled is significantly shorter than implementing other commonly
used methods.
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1. Introduction

The Traveling Salesman Problem (TSP) probably represents the
most intensive area of research within the wide range of combina-
torial optimization problems [20,24]. Whereas the diverse perspec-
tives and problem-solving methods have helped practitioners and
scholars to address a multitude of different problems in different
industries [21,33,14,13], the literature on TSP is still underdeveloped
with regard to moving targets—such as in the fishing or military
industries [26]. In this case, the most recent approaches (which can
be grouped under the heading “Dynamic Traveling Salesman Pro-
blem”—DTSP) work on a real time basis to find the changes between
nodes [40]; nevertheless, they do not anticipate the future move-
ment of targets, so the optimal solution is given only when changes
happen and the algorithm is subsequently recalculated.

With this academic background in mind, we faced the problem of
tuna vessels that pick up fish aggregating devices (FADs) at sea. When
FADs transmit information on how much tuna might be available
beneath them, the vessels need to design a route taking into
consideration that FADs are constantly moving. They need to mini-
mize distance while recovering the FADs because saving time and
fuel determines their competitiveness. Using therefore real data, the
paper contributes to the literature by proposing a new approach that
combines a heuristic method with a predictive technique. Particu-
larly, we first estimate the trajectories of the FADs to subsequently
build a genetic algorithm that uses this information and searches for
the best possible route considering their future locations.

From all heuristic methods, we chose GAs for their properties (they
are evolutionary, show statistical convergence, and tend to a global
optimumwith considerable robustness) and because they offer vessels
the possibility to reach a solution within an acceptable computational
time [30,6]. On the other hand, we chose Newton'smovement equation
as a predictive technique (we show a performance comparison with
other techniques for illustrative purposes) because it offers vessels a
sound and quick forecast of the future position of FADs with very little
information. By combining both tools in a single method, which could
be named Genetic Algorithm based on Trajectory Prediction (GATP), we
reach a global optimization solutionwith statistically better results than
those offered by commonly used methods, such as the Nearest
Neighbour (NN) strategy or simple Genetic Algorithms (GA) [32,43].

The following section presents a survey of the relevant literature
that guides our approach. Section 3 describes the tuna vessels FAD
recovery problem. Section 4 compares different prediction models in
order to show that the final choice (in our case Newton's motion
equation) depends on the specific characteristics of each forecasting
initiative. Section 5 shows the experimental design, Section 6
discusses results and, finally, Section 7 concludes highlighting the
main contributions of the paper and their implications.

2. Literature review

Calculating the optimal route for recovering N moving elements
lies within the Traveling Salesman Problem (TSP) [24]. Given a list of
cities and their pairwise distances, the task is to find the shortest
possible route to visit each city only once and then return home [1].
Not surprisingly, the initial applications to real world problems
were mainly in transportation and logistics [12].

Scholars soon perceived, however, that further applications
could be feasible if they interchanged the city concept with, for
example, soldering points or DNA fragments, and the distance
concept with other constraints like traveling times, cost or time
windows. Further developments thus appeared in such diverse
fields as crystal structure analysis [7], the drilling of printed circuit
boards [22] or even the mapping of a mouse genome [2]. Certainly,
the diverse applications also triggered the development of new
problem-solving methods [48], from exact algorithms to meta-
heuristics [8], such as Swarm Intelligence [9] or GAs [13].

GAs represent in fact one of the most consolidated approaches
to the TSP [41]. They were first introduced by Holland [27] to
generate solutions for optimization problems using techniques
inspired by natural evolution [50], leading to many theoretical
developments over the last thirty years [44,47].

Basically, GAs achieve the optimal solution from a random set
of initial solutions called population. Each set comprises an array
of numbers where each number represents one of the targets on
the route, which are named genes. Hence, each population is
evaluated by a fitness measure (in our study, for instance, the
measure is determined by the minimal distance between all points
on each route), so parents of the next generation are selected
probabilistically from the whole population so that the best routes
are selected to become the parents of the next generation. The
process is regulated by operators reflecting typical gene traits such
as crossover and mutation. GAs repeat this loop until they converge
to a near global optimal.

Recently, some scholars have intensified the use of GA to
implement theoretical developments in different fields of applica-
tion such as ship routing with time deadlines [31], vehicle routing
with time windows [15,18,49,4] and vehicle routing with loading
constraints [45]. Despite the progress that implementing GAs
brought to the literature on route optimization, however, their
potential has not been fully exploited when addressing the TSP
with constantly moving targets.

GAs generate near-optimal solutions only when cities are at time
t¼0; but, in a dynamic scenario, the salesman needs to decide a route
for t¼1, t¼2, etc. The final route that the salesman should follow is
therefore necessarily different from the one chosen by a conventional
approach to static objectives. This is probably the reason why recent
literature has increasingly dealt with dynamic targets, leading to a
new line of research in this field since Pasraftis [42] introduced a first
reflection on the Dynamic Traveling Salesman Problem (DTSP).

Some contributions compare DTSP and TSP and reflect on basic
issues to solve the problem, appropriate approaches, or key evalua-
tion criteria [28,55]. Most of the literature, however, presents
specific applications based on well-known metaheuristics such as
Ant Colony Optimization [16,23], Simulated Annealing [29], Tabu
Search [17] and Genetic Algorithms [37,53,35], under which we can
also include particular offshoots like inver-over operators [34,51] or
CHC Algorithms [46]. All this work represents a generalization of
TSP in which targets are not necessarily static and applications are
often formulated with time-dependent variable constraints.

Taking this background into account, our approach resembles
that of the existing literature on DTSP but differs in an important
way. Both assume the dynamic nature of targets, but the available
DTSP solutions work basically on a real time basis to find the
changes between nodes [55,25]. The main DTSP methods [40]
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consist in fact in (i) restarting the search method from start, which
entails that problems are dealt with as a series of static optimiza-
tion problems with no relation to each other, and (ii) starting from
the best solutions found before the last event, which has found
different methodological alternatives. Garrido and Riff [19], for
instance, use a hyper heuristic approach generating a set of low-
level heuristics; Pantrigo and Duarte [40] rely on a Scatter Search
Particle Filter (SSPF) to take advantage of the best solutions
obtained in the previous executions; whereas Hajjam et al. [25]
employ an intermediate structure in a hybrid method that manip-
ulates the self-organizing map in order to minimize route lengths
and customer's waiting time. Hence, although DTSP has allowed us
to gain new insights by addressing new problems, the current
literature does not anticipate the future movement of targets;
optimal solutions are given only when changes happen and the
algorithm is subsequently recalculated. By contrast, our approach
follows the line of research drawn by the literature on DTSP, but
assumes that changes in the localization of targets are small,
traceable and time dependent. This allows us to estimate the
trajectories of the targets, as explained above, to subsequently
build a genetic algorithm that searches for the best possible route
considering their future locations.

3. The tuna vessel FAD recovery problem

An FAD is a man-made object used to attract ocean-going pelagic
fish, such as tuna, which gathers around it for reasons that are still
unclear [3]. Most purse seiners for tuna therefore release FADs into
the sea, letting them float on the water surface following the ocean
currents. Some of them are furthermore equipped with echo-
sounders that transmit information about their localization and the
aggregated biomass beneath them [11]. Vessels can thus receive new
messages from the buoys, and each buoy position is updated at least
every 12 h (latitude and longitude). These messages are transmitted
automatically in a predictable and controlled way, communicating in
real time via satellite telecommunication systems such as Argos,
Inmarsat, Orbcomm and Iridium [38].

Each tuna vessel can handle a different number of FADs, but the
maximum per vessel could be some hundreds. Each of them drifts
on a particular course and speed, and these conditions change
with time because they depend basically on the sea currents under
the FAD and on superficial wind. Their speed can thus range from
0.2 knots1 to 2 knots when they are in areas with strong currents,
but on average they travell at about 1 knot.

Most tuna vessels recover their FADs still today following the
Nearest Neighbor strategy (NN) (or evenwithout any plan at all). The
advantage of this method is that it is easy to implement, as the next
target will always be the closest to the vessel. The amount of nautical
miles covered by vessels, however, is far from being optimal. In order
to calculate the NN with dynamic targets, it is necessary to take the
next recovery decision once the previous one has been taken, and
once the rest of the targets' movements have been ascertained in
order to figure out which will be the closest at time tþt0.

Figs. 1 and 2 show a real scenario of FADs drifting on the Indian
Ocean. Each black point represents a different buoy, whereas the red
line represents the past positions of the object sent via satellite. The
time difference between positions is generally 12 h or less.

4. Drifting object prediction

The literature offers different methods to simulate and predict
current movements in the sea [39], but all are based on complicated

mathematical models which require data that a vessel cannot easily
obtain, such as wind data and eddy effects. Furthermore, by contrast
with Lagrangian buoys, which have scientific purposes, FADs are
made without any standard. They are made by fishermen who use
simple materials like wood, string and net, so two FADs cannot be
assumed to drift identically under the same conditions. It is not
possible therefore to use models based on standard Lagrangian
buoys to predict the future positions of FADs in the sea.

In this context, we address the drifting FAD prediction problem
from another, simpler point of view; one that requires no more
data than the last position of each object. As soon as the buoys
transmit their subsequent positions, the algorithm will update the
last position and will be calculated again to predict the best route,
following the current position of the buoy. So if the prediction for a
specific FAD is not accurate enough to predict the best route, the
solution will be updated when the next message is received,
therefore showing a better optimal route if one exists.

Among the most simple prediction methods available, we have
selected to compare two easy-to-implement tools: time series
forecasting and Newton's motion equation. These prediction
methods are valid for any FAD, regardless of the ocean where it
is drifting; however, their effectiveness decreases with time
because the error has a cumulative effect. Be that as it may, our
goal is to predict where the FAD will be in the near future; not only
its next position, but many future positions.

4.1. Time series

A time series is a sequence of data points that are measured at
uniform time intervals. Time series forecasting, in turn, refers to a
model that predicts future events based on past values [10].
Among the methods to perform this type of analysis, the auto-
regressive model (AR) is very often used to predict the future
position of objects [44,5]. It predicts the output of a system based
on its previous outputs.

There are a number of different notations for time-series
analysis, among which one of the most common is the following:

Y ¼ fYt : tATg
This AR(p) notation indicates an autoregressive model of order p
(number of lags). The AR(p) model is defined as

ytþ1 ¼ cþ ∑
p

i ¼ 1
ðαiytþ1� iÞþεt

where α1;…;αp are the parameters of the model, c is a constant
(often omitted for simplicity) and εt is the error. AR models are
easy to calculate and are widely used as predictors for time series
analysis of, for instance, stock markets, etc. [36,54].

4.2. Newton's motion equation

Motion equations describe the behavior of a system as a
function of time. More specifically, the equations of motion
describe the behavior of a physical system as a set of mathematical
functions in terms of dynamic variables: normally spatial coordi-
nates and time are used. The Newton's motion equation is
considered between two points of time: one initial point and
one current or final point:

ytþ1 ¼ ytþvtΔtþ1
2 atΔ

2
t

where

� yt: the position at the end of the interval (displacement);
� vt: the velocity at the end of the interval t;
� Δt: the time interval between the initial and current states;
� at: acceleration at time t.1 1 knot ¼ 1 nautical mile per hour; 1852 kilometers per hour.
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Notice that in the rest of the article we will refer to the time
variable t as discrete. Although FADs are constantly moving in the
sea, the information on their position is given twice a day because
of the airtime cost inherent to satellite communications.

Given that the acceleration value depends on the speed of the
object, in our discrete case its calculation requires the last two
positions of the object:

a¼Δv

Δt

4.3. Model comparison

Twelve real random FADs were selected from all the oceans to
compare how well the prediction methods forecast their next
position. Each position is a pair of two single elements: latitude
and longitude. Independence between latitude and longitude is
assumed so, for a single position prediction, the model estimates

two independent parameters, latitude and longitude, which are
estimated using the same equation.

The first step is to compare the different time series to see what
order suits better the real tracking of FADs. Ordinary Least Squares
(OLS) was used to determine AR, and the order of AR was selected
using MAPE (Mean Absolute Percentage Error).

MAPE expresses accuracy as a percentage of the actual data and
is defined by the formula:

M¼ 1
N

∑
N

t ¼ 1

����
ðAt�FtÞ

At

����

where At is the actual value, Ft is the predicted value and N is the
number of fitted points. MAPE therefore provides an intuitive way
to asses the importance or errors, since it easily reflects, for
instance, that an error of 10 when the actual value is 100 (10%
error) is worse than an error of 10 when the actual value is 1000
(1% error).

Fig. 2. Two FADs drifting in the ocean. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 1. FADs drifting in the Indian Ocean. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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We have checked that first order time series predicts much
better than other time series with more order lags. The rationale is
that the speed of FADs ranges from 0, 2 to 2 knots, so the best
approach to the next position will be close to the last position,
which is what the first order equation suggests.

This first order series is very simple to calculate and only
requires the last position of each object, but it has one important
limitation. It predicts the future rather accurately once the α1

parameter value has been set for each FAD. This means that, before
predicting the next positions, it is necessary to analyze all the past
positions, calculate the best parameter (coefficient) and only then
can the equation be used to predict future positions for that FAD
(but only for that FAD). If we need to predict future positions of
other FADs, the optimal coefficient needs to be re-calculated.

Accordingly, in order to estimate the future movement of FADs
with a time series model, we will consider two options: The first
stems from estimating the average of all the coefficients, which
would be close to 1 ðαC1Þ. This is named a random walk model,
with the form ytþ1 ¼ ytþεt , therefore suggesting that the next
movement of an FAD is only determined by its last position (which
entails there is no movement). The second option estimates the
coefficient for each FAD. We will then compare these two time
series models with Newton's motion equation:

ytþ1 ¼ yt ð1Þ

ytþ1 ¼ α1yt ð2Þ

ytþ1 ¼ ytþvtΔtþ1
2 atΔ

2
t ð3Þ

The information available on each object is latitude and long-
itude in degrees, and the time difference between each position is
12 h. Each buoy in the study has a minimum of 200 samples,
which is enough to establish the coefficients for each buoy and to
compare the different methods properly. Table 1 shows some real

data from a buoy and how the latitude and longitude change with
time. In this case, day 0 refers to the last position, whereas each
half-day step is the former position that the buoy sends every 12 h.

The results are shown in Table 2: Newton's motion equation
has less error in average than the other two methods (even if we
compare it with the specific ARð1Þ for each FAD). This is an
important result because FAD positions can be therefore estimated
without great computational costs. By contrast, it is worth noting
that Newton's motion equation only works for short time predic-
tions because the error increases with time. Forecasting the
trajectory of an FAD for more than five days would require a more
complex prediction method, probably internalizing chaotic mod-
eling as with ocean currents or weather forecast [10]. This is not
needed here, however, because vessels spend normally less than
five days fishing and recover two to three FADs each day. Future
research can indeed identify applications where this effort is
useful.

5. Methodology

5.1. Data on buoys and vessels

5.1.1. Buoys input
If our problem has N drifting objects, being each bi an FAD:

ðb1; b2;…; bNÞ
And for each of these objects we know their current position

and the last M positions, then the input we have is an N � ðMþ1Þ
matrix:

bt1 bt�1
1 bt�2

1 ⋯ bt�M
1

bt2 bt�1
2 bt�2

2 ⋯ bt�M
2

⋮ ⋮ ⋮ ⋯ ⋮
btN bt�1

N bt�2
N ⋯ bt�M

N

0
BBBBB@

1
CCCCCA

Where the first column are all the objects in the current time t¼t,
the second column are all the objects in t ¼ t�1, following the
progression up to the last column, where we have the objects at
t ¼ t�M.

Table 1
Buoy data samples.

An example of buoys data

Days Latitude Longitude

0.00 �8.07450 53.08117
0.50 �8.20417 52.92067
1.00 �8.43233 52.75367
1.50 �8.67017 52.56317
2.00 �8.69100 52.45533
2.50 �8.60883 52.27750
3.00 �8.60100 52.08517
3.50 �8.61000 51.87983
4.00 �8.60050 51.78600
4.50 �8.51550 51.74350
5.00 �8.38250 51.67350
5.50 �8.28683 51.54150
6.00 �8.22217 51.45200
6.50 �8.18550 51.41283
7.00 �8.10300 51.42383
7.50 �8.00983 51.43133
8.00 �7.94450 51.38983
8.50 �7.88600 51.34833
9.00 �7.84233 51.33783
9.50 �7.78750 51.24567

10.00 �7.81867 51.19767
10.50 �7.87417 51.12983
11.00 �7.98883 51.09517
11.50 �8.03833 51.08083
12.00 �8.07300 51.07117
12.50 �8.08317 51.01017
13.00 �8.13817 50.92533
13.50 �8.22083 50.84883
14.00 �8.27383 50.85417
14.50 �8.21600 50.81000

Table 2
MAPE for three prediction methods.

Buoys Lat/Lon Random walk (%) AR(1) (%) Newton (%)

Buoy 1 Latitude 0,84 0,84 0,82
Longitude 0,22 0,18 0,24

Buoy 2 Latitude 0,46 0,47 0,48
Longitude 0,11 0,11 0,08

Buoy 3 Latitude 1,31 1,28 0,63
Longitude 0,27 0,29 0,06

Buoy 4 Latitude 1,69 1,67 0,75
Longitude 0,25 0,32 0,06

Buoy 5 Latitude 5,33 5,37 1,02
Longitude 0,07 0,14 0,02

Buoy 6 Latitude 0,30 0,33 0,25
Longitude 0,05 0,13 0,03

Buoy 7 Latitude 1,27 1,28 0,77
Longitude 0,15 0,23 0,03

Buoy 8 Latitude 6,28 6,30 3,86
Longitude 0,39 0,44 0,12

Buoy 9 Latitude 32,37 32,36 18,40
Longitude 0,10 0,16 0,03

Buoy 10 Latitude 2,81 2,79 0,88
Longitude 0,25 0,27 0,05

Buoy 11 Latitude 10,04 10,04 5,05
Longitude 0,21 0,26 0,07

Buoy 12 Latitude 30,16 30,16 59,98
Longitude 0,69 0,72 0,19
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Each object bt has two coordinates, latitude and longitude, to
plot the real position on a 2D map:

bt ¼ ðlatitudet ; longitudetÞ
Note that M can be different for each object depending on

when the object was released in the sea. In our case it is enough to
have two positions in the past for each object; that is, t�1 and
t�2:

bt1 bt�1
1 bt�2

1

bt2 bt�1
2 bt�2

2

⋮ ⋮ ⋮
btN bt�1

N bt�2
N

0
BBBBB@

1
CCCCCA

5.1.2. Vessel and fishing information input
We need from the vessel the following inputs:

� Vessel speed average (in knots) when traveling from one object
to the following one: vs.

� Initial position of the vessel: vinit ¼ ðvlat ; vlonÞ.
� Time spent by object ft (fishing time) with two possibilities (our
solution can handle both regardless of the choice of the vessel):
○ The same fishing time for all the objects: f t;1 ¼ f t;2 ¼⋯¼ f t;N .
○ Different fishing time for each object: f t;1a f t;2a⋯a f t;N .

5.1.3. Objects prediction
Once we have the inputs, the first step is to predict the next

position of each object using Newton's motion equation. Accord-
ingly, the estimation of the R next positions would be

b̂tþ1 ¼ btþvtΔtþ1
2 atΔ

2
t

b̂tþ2 ¼ b̂tþ1þ v̂tþ1Δtþ1
2 âtþ1Δ

2
t ⋮

b̂tþR ¼ b̂tþR�1þ v̂tþR�1Δtþ1
2 âtþR�1Δ

2
t

The number of future predictions must be enough to mix with
the GA. We will talk about a quantity of R future positions, where
typically RcN, depending on vs and ft.

After predicting R future positions for each object, the result
matrix will be

bt1 b̂
tþ1
1 b̂

tþ2
1 ⋯ b̂

tþR

1

bt2 b̂
tþ1
2 b̂

tþ2
2 ⋯ b̂

tþR

2

⋮ ⋮ ⋮ ⋯ ⋮

b̂
t

N b̂
tþ1
N b̂

tþ2
N ⋯ b̂

tþR

N

0
BBBBBB@

1
CCCCCCA

Where for example b̂
tþ2
N is the predicted position of the object bN

at time tþ2.

5.2. Genetic algorithm design

As discussed in Section 2, GAs achieve a quasi-optimal solution
from a random set of initial solutions called population. In our paper,
the specific properties of the GA reflected our concern to minimize
the distance traveled by the vessel throughout the recovering
process. We summarize them below and provide subsequently in
the following subsections a brief report on the algorithm design:

� Population size: 100;
� Natural Selection Mechanism: Tournament selection;
� Tournament size: 50 couples tournament. Winners are selected;
� Crossover type: Greedy crossover. P ¼ 0;7;
� Mutation type: Simple Mutation between two elements. P ¼ 0;3;

� Stopping Criteria: 1000 iterations without any fitness improvement.

5.2.1. Solution encoding
A solution represents the route that a vessel must follow to

recover all the buoys. Each buoy will therefore be a point of the
route represented by a number. For instance, (4, 2, 3, 1) means that
the vessel has to recover object 4, then object 2, object 3 and
finally object 1, which is the end of the route; vessels do not return
to their initial point of departure.

5.2.2. Initialization
As is usual in GAs, the initial populationwas chosen randomly with

the aim of covering the entire search space. We particularly used a
random set of 100 initial solutions, which perfectly suits the problem
we desire to address [52]. The fitness of each solution is measured as
the total distance traveled by the vessel to recover all the buoys.

5.2.3. Selection
Once the fitness of each random solution has been calculated,

the GA works to select a sub-set of routes that becomes the
parents of the next generation. We have used here the well-known
Tournament Selection Method (TSM) as a selection procedure due
to its robustness and simplicity to adjust the genetic pressure,
which determines the convergence rate of the GA. Firstly, the TSM
chooses a number of couples (tournament size) randomly from the
population. We use a 2-Tournament for the mating selection,
which entails that we initially selected randomly 50 pairs of
routes. Then, each pair competes with each other. The one with
the best fitness wins the tournament and becomes a parent for the
next generation, named offspring. This selection pressure drives
the GA to improve the population fitness through successive
generations. In order to do so, nevertheless, the algorithm needs
a probability for crossover and mutation. Following standard
practices with GAs, the crossover probability has been set at
p¼0,7; whereas the mutation probability, p’, equals 0,3 (pþp’¼1).

5.2.4. Crossover
Crossover is a method where the offspring inherits the charac-

teristics from their parents. We chose the Greedy Crossover Method
[52] to address the specific characteristics of our problem: the vessel
needs to recover all the buoys only once, and we cannot remove any
of them or add others. Thus, given two parent routes R1 and R2, the
first offspring is built following these rules: we start in a random
buoy b, and then check if the edge leading to b or from b is used in
both R1 and R2. If this happens, then the common buoy b is chosen.
Otherwise the b's right edge is compared in R1 and R2, so the shorter
one is chosen unless it is repeated and it introduces a cycle. In this
case, the longer path is chosen. The second offspring is built in a
similar way but comparing the b's two left side edges instead of the
right ones. In order to implement this method, we need to calculate
the distance between some buoys to compare the edges and to
determine how the offspring is created. This offspring inherits
different characteristics from both parents, ensuring that all the
buoys of the route are chosen only once.

5.2.5. Mutation
Mutation is used to preserve and introduce the genetic diver-

sity, so it prevents the algorithm to avoid a local minimum when
the population is too similar among them. There is always a
mutation probability associated to the mutation operator, which
as noted above, we fixed at a standard level of 0,3. There are
different mutation types; from the simplest where only one
chromosome is mutated (bit string mutation) to more complex
approximations (Flip bit, Boundary, Gaussian, etc.). Here we use
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the simplest one, where two elements of the route are exchanged
randomly, since it is sufficient to maintain the genetic diversity of
our population and ensures proper convergence of the algorithm.
For example, if we apply mutation in the route R1¼(2, 4, 1, 3, 5)
over the elements 2 and 3 (first and fourth position of the vector),
the resultant offspring will be R10 ¼ ð3;4;1;2;5Þ.

5.2.6. Stopping criteria
So once we have chosen the 50 parents from the initial population,

we provoke crossover or mutation. In both cases we will generate two
descendants from each of the 50 parents. If the crossover operator is
selected, we choose randomly other parent from the other remaining
49 parents, and later apply the Greedy Crossover technique in order to
get the two descendants. By contrast, if the mutation operator is
selected, we will mutate two genes (buoys) of the parent route. So if
we desire to generate two descendants, we need to perform the
mutation twice for each parent. Once we repeat this process for all 50
parents, the offspring will double to reach again 100 —improved—
solutions. This process finishes when the loop of steps achieves 1000
iterations without any fitness improvement (stopping criteria). The
quasi-optimal route is thus obtained reflecting the shortest distance to
recover all the buoys from the vessel's initial position.

5.3. GATP final solution: implementing the GA with trajectory
prediction

Based on the inputs and techniques we have showed pre-
viously, this subsection describes how the GA can work together

with the prediction technique (in this case Newton's motion
equation) to improve the route when targets are constantly
moving. The solution, named GATP (Genetic Algorithm based in
Trajectory Prediction), will evolve from scratch to a route where
the vessel anticipates the future movement of the FADs.

In order to calculate the final route, we will use the predicted
positions. Fig. 3 shows the block diagram of our GATP solution,
whereas Fig. 4 represents in detail how our method calculates the
fitness of each route.

We show below the steps to solve the problem (Fig. 3):

1. Calculation of the R future positions of each object:

ðb̂tþ1
; b̂

tþ2
;…; b̂

tþRÞ.
2. Random solutions are calculated as follows:

Being ðb1; b2;…; bNÞ the objects to recover, we will select random
solutions to have the first generation of solutions to the problem.
Each route is a sorted list of the objects: ðr1; r2;…; rNÞ, where
each r can be whatever object to recover ðb1;…; bNÞ.

3. Calculation of the fitness of each route:
(a) ½t ¼ 0� and ½d¼ 0�. Time and distance equal to zero.
(b) vp¼ initial vessel position.
(c) From i¼1 to N

Fig. 3. GATP block diagram. Fig. 4. GATP fitness calculation.
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i. Calculation of the time needed by the vessel to go from
the current position (vp) to the next object (ri: next
object in the selected route). This time it will be stored
as bi. Also, the fishing time of this object will be taken
into account as fi.
The position of the object ri will be r̂ ti � predicted
position of that object i at time t.

ii. Calculation of the time spent to recover and fish in the
object ri

ti ¼ biþ f i

iii. Vessel position (vp) is updated to the position of the last
recovered object ri at time t.

iv. Calculation of the distance traveled by the vessel to
recover the object i

di ¼ vs � bi

v. Current time t is updated to t ¼∑i
j ¼ 1tj � current

time spent.
vi. Total distance traveled:

d¼ ∑
i

j ¼ 1
dj

(d) Fitness of the route:

d¼ ∑
N

i ¼ 1
di

4. Check if the termination condition has been reached. In this
case the result is the best route; if not, go to step 5.

5. Parents selection.
6. New offspring generation (crossover and mutation).
7. Go to step 3.

Note that we ignore the movement of the FAD in the first
movement of the vessel, which means that we ignore the move-
ment of the FAD when the vessel is traveling to recover it. This
only happens, however, for the first object. The rationale of this
mathematical simplification is to avoid the calculation of the
collision vector from the vessel to the object when it is moving
(alternatively, the only challenge has to do with the time calcula-
tion of the algorithm). This evolving process makes the routes
selected in each generation converge on the route that minimizes
the real distance from the vessel to all the FADs. Algorithm 1
shows the pseudocode of the GATP solution.

Algorithm 1. GATP algorithm.

Fig. 5 shows the rationale of the GATP solution and how the
route is calculated from the initial position of the vessel (repre-
sented by a square) to each object, considering each trajectory is
time dependent. We can see that the first vector goes directly
where the first buoy is; however, the second finishes where the
buoy is expected to be at time tiþ1. The same procedure holds for
the rest of the buoys.

The most significant difference between our GATP method and
the GA-TSP approach is the restriction used to calculate the costs
of traveling from one point to the other. The GA-TSP method does
not use any prediction technique and it is based in the static
assumption of the objects. For this reason the fitness function is
different in each case. The costs are totally dependent on theFig. 5. Using GA based combining prediction methods.

Fig. 6. NN, GA-TSP and GATP: a graphic example for 12 FADs. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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distance traveled by the vessel before measuring where the next
object will be at time t. The distance between the vessel (previous
object at time t) and the next object at time t is subsequently
calculated. This fitness function makes our GATP solution evolve
towards the route that minimizes the distance traveled by a vessel.

Fig. 6 shows our solution with an example of the implementa-
tion of the three methods.

Each route has a different color when they deviate from the rest:

� NN: grey color
� GA-TSP: pink color
� GATP: orange color

The FADs are represented by the dots in red. In this example the
orange cross represents the starting position of the vessel, whereas
each circle reflects an FAD recovery. The final point of each route
(last FAD recovered) is marked with a cross inside a circle.

The graphic shows that the circles are close for the first FADs
recovered, but as the time goes by, the distance increases.
Particularly, the three methods start similarly: all start picking
the two FADs to the north of the orange cross (vessel initial
position). This is why we can only see one trajectory in orange.
Then, the NN solution leads the vessel to a different route; we can
see how the grey line goes south, whereas the orange line keeps
heading north. The GA-TSP and GATP trajectories thus continue
the route in the same order during the recovery of 3 more FADs;
one to the north, the following to the east and the third to the
south-east. After picking the fifth FAD, however, the routes deviate
and the pink trajectory reflecting GA-TSP appears.

6. Results and discussion

In this section we discuss the improvement achieved by addres-
sing DTSP with the method proposed in this paper: GAs based on
Trajectory Prediction (GATP). Initially, and just with informative
purposes, we compare the Nearest Neighbor (NN) strategy, which
is the method normally used by tuna vessels, with TSP solved by GAs
(GA-TSP). This second method consists on applying a simple GA to
the TSP problem. Then, we compare the performance of our GATP
method with both NN and GA-TSP. It is worth recalling that we use

real data offered by tuna companies for the last quarter of 2013. We
have made the following assumptions:

� Average vessel speed¼12 knots;
� Recovery time ¼ 3 h for all the objects;
� Number of objects to recover ¼ 6, 9 and 12;
� Buoys have different speed, which can go from 0.2 knots up to 2

knots;
� Distance between buoys is also variable, it can go from 100 nm

up to 1500 nm.

The results (average, standard deviation and the improvement
percentage achieved between each two methods) are shown in
Table 3. We can observe that our GATP method is always better
than the NN and GA-TSP for recovering 6, 9 and 12 buoys (normal
working range for these vessels).

These results are supported statistically. The comparisons have
been tested through a Repeated Measures ANOVA, given that the
same subjects (vessels) are used for each treatment (method). We
thus find significant differences among methods and among the
interaction of methods with a different number of FADs
ðSig:¼ 0:000o0:05Þ (Table 4). Results are consistent since the
most frequent multivariate tests used in ANOVA (Phillai's trace,
Wilks' Lambda, etc.) show a very high significance. If we now
deepen into which of the means for the three methods are
significantly different from the others, the pairwise comparisons
support our descriptive analysis: average results by GATP are
statistically different (distances are lower) from those obtained
by NN and GA-TSP for 6, 9 and 12 FADs (Table 5).

In short, GATP yields better results than other common
optimizing strategies when addressing routes for moving targets
in the short term. The sophistication of the prediction method,
however, must be adapted to the specific characteristics of the
exercise. For instance, improving forecasting accuracy for FADs
trajectories in the long term requires a prediction method that
considers the chaotic nature of its currents and internalizes Eddy
effects, temperature or altimetry. As mentioned above, however,
this is not a concern in the specific case of tuna fishing because a
typical vessel spends normally less than 5 days fishing and
recovers two sometimes 3- buoys each day.

Table 3
Results comparison.

Experiment No buoys Total distance traveled (nautical miles) Improvement comparison

NN GA-TSP GATP GA-TSP vs NN (%) GATP vs NN (%) GATP vs GA-TSP (%)

1 6 buoys x 1735.1 1645.0 1615.6 4.4 6.2 1.9
σ 566.6 498.8 501.2 5.6 5.6 2.2

2 9 buoys x 4277.0 4185.4 3953.6 1.7 7.3 5.5
σ 807.3 726.8 702.0 7.5 4.7 3.5

3 12 buoys x 4069.4 3817.0 3734.1 5.6 7.5 2.1
σ 725.8 559.6 556.3 5.6 8.3 4.4

Table 4
Repeated measures ANOVA: multivariate tests

Effect Value F Hypothesis df Error df Sig.

Method Pillai's Trace 0.552 34.470 2.000 56.000 0.000
Wilks' Lambda 0.448 34.470 2.000 56.000 0.000
Hotelling's Trace 1.231 34.470 2.000 56.000 0.000
Roy's Largest Root 1.231 34.470 2.000 56.000 0.000

Method � No of Buoys Pillai's Trace 0.371 6.482 4.000 114.000 0.000
Wilks' Lambda 0.653 6.647 4.000 112.000 0.000
Hotelling's Trace 0.495 6.805 4.000 110.000 0.000
Roy's Largest Root 0.405 11.556 2.000 57.000 0.000

C. Groba et al. / Computers & Operations Research 56 (2015) 22–3230



Finally, although the execution time of the GATP algorithm is an
important variable indeed, tuna vessels do not require a real time
computation because it takes at least 3 h (normally between 8 and
12 h) to fish and recover each buoy. The skipper will therefore run
the solution to plan a week of work, finding out which is the best
buoy to start with and then run the algorithm with information
updates on the buoys position to keep on. Even if users had to wait
several minutes for the algorithm execution in each buoy, it would
not accordingly represent a problem. Our experiments with real
data show, anyhow, that the execution time for the 3 methods is
much lower:

� NN: 10–20 milliseconds for the recovery of 6 up to 12 buoys;
� GA: 0,5–1,2 s for the recovery of 6 up to 12 buoys;
� GATP: 0,6–2 s for the recovery of 6 up to 12 buoys.

7. Conclusions

We have addressed the Traveling Salesman Problem with GA
assuming that targets change their position with time. Our con-
tribution is a new way of solving the dynamic route optimization
problem using a simple prediction method that, combined with
the power of GAs, makes the implemented algorithm evolve
towards the near-optimal route.

The comparative analysis between GATP and other commonly
used methods like NN or GA-TSP reveals the benefits of inter-
nalizing predictive methods within GAs. However, given the
chaotic nature of ocean currents and regardless of the sophistica-
tion of the forecasting method, we can expect that GATP adds less
value if long term predictions were needed.

In practical terms, the GATP algorithm's execution time allows
new, better routes to be recalculated easily when the FADs new
positions are updated, also showing a better real time route
possibility where it exists. We could accordingly conclude that
GATP allows tuna vessels and any other agent pursuing moving
targets in the short term -like military airplanes- to minimize the
distance traveled, which would impact directly on such relevant
variables as the time employed, fuel consumption or CO2 emis-
sions to the atmosphere. It is important to emphasize here that, for
a given speed, the distance saved is equivalent to fuel savings. This
is extremely relevant not only to reduce costs but also to increase
the storage space.

Furthermore, the development of more sustainable fishing with
FADs may benefit from further research. To begin with, the
algorithm is totally flexible and open to future improvements
adding new restrictions, such as prioritizing the recovery of some
targets that have more fish beneath them (using buoys with echo-

sounder information), working with time-windows for the recov-
ery of FADs (the vessels cannot get fish during the night, for
example), implementing a multiple vessel FAD recovery strategy
or finding the optimal vessel speed in order to save more fuel.
From a more general perspective and beyond the specific tools
employed in this paper, our results also reflect the value of mixing
an heuristic method with a predictive technique, regardless of the
specific choice in any of the two. A quasi-optimal solution could be
consequently found using other heuristic methods if they were
combined with prediction techniques in a proper way.

Finally, from a theoretical point of view, it is worth noting that
GATP is a generalization of the classic methods to solve the TSP
with GA. When targets are not moving the predicted next position
by GATP will be the same offered by GA-TSP, so this solution will
evolve as classic methods for GA-TSP do. However, when targets
start moving, the proposed solution is different because GATP
evolves in order to continue optimizing the total route traveled,
assuming the future movement of each object and therefore
achieving better results (depending on the prediction period).
Our solution can therefore be used in a generic way; for static,
dynamic and mixed scenarios, being a more flexible and more
adaptable solution to estimate near-optimal routes in general.
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